Power MOSFET 23 Amps, 25 Volts

N-Channel D²PAK

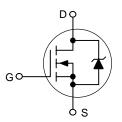
Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Typical Applications

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High–Efficiency DC–DC Converters

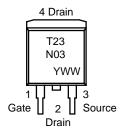
MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	25	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
	I _D I _{DM}	23 6.0 60	A
Total Power Dissipation @ T _A = 25°C	P _D	37.5	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Thermal Resistance – Junction–to–Case	$R_{\theta JC}$	3.3	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	ů



ON Semiconductor®

http://onsemi.com


23 AMPERES, 25 VOLTS $R_{DS(on)} = 32 \text{ m}\Omega \text{ (Typ)}$

N-CHANNEL

MARKING DIAGRAM & PIN ASSIGNMENTS

T23N03 = Specific Device Code

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping	
NTB23N03R	D ² PAK	50 Units/Rail	
NTB23N03RT4	D ² PAK	800/Tape & Reel	

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)

Characteristics		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-		-	-	-
Drain-to-Source Breakdown Voltage (Note 1) (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)		V(br) _{DSS}	25 -	28 -	_ _	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 150^{\circ}\text{C})$		I _{DSS}	_ _	- -	1.0 10	μAdc
Gate–Body Leakage Current (V _{GS} = ±20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS (Note 1)						
Gate Threshold Voltage (Note 1) $(V_{DS} = V_{GS}, I_D = 250 \mu Ad$ Threshold Temperature Coefficient (V _{GS(th)}	1.0	1.8 -	2.0	Vdc mV/°C
Static Drain-to-Source On-Resista $(V_{GS} = 4.5 \text{ Vdc}, I_D = 6 \text{ Add})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 6 \text{ Add})$	c)	R _{DS(on)}	- -	50.3 32.3	60 45	mΩ
Forward Transconductance (Note 1) (V _{DS} = 10 Vdc, I _D = 6 Adc)		9FS	1	14	-	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	225	_	pF
Output Capacitance	$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V, f} = 1 \text{ MHz})$	C _{oss}	-	108	_	
Transfer Capacitance		C _{rss}	_	48	_	
SWITCHING CHARACTERISTICS	(Note 2)					
Turn-On Delay Time		t _{d(on)}	-	2.0	_	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 10 Vdc,	t _r	-	14.9	_	
Turn-Off Delay Time	$I_D = 6 \text{ Adc}, R_G = 3 \Omega$	t _{d(off)}	-	9.9	_	
Fall Time		t _f	-	2.0	_	
Gate Charge	$(V_{GS} = 4.5 \text{ Vdc}, I_D = 6 \text{ Adc},$ $V_{DS} = 10 \text{ Vdc}) \text{ (Note 1)}$	Q _T	-	3.76	_	nC
		Q ₁	-	1.7	_	
		Q ₂	_	1.6	_	
SOURCE-DRAIN DIODE CHARAC	TERISTICS					
Forward On-Voltage	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 1)}$ $(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}	1 1	0.87 0.74	1.2 -	Vdc
Reverse Recovery Time		t _{rr}	-	8.7	_	ns
	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	ta	-	5.2	_	
	dl _S /dt = 100 A/μs) (Note 1)	t _b	-	3.5	_	
Reverse Recovery Stored Charge		Q _{RR}	_	0.003	_	μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

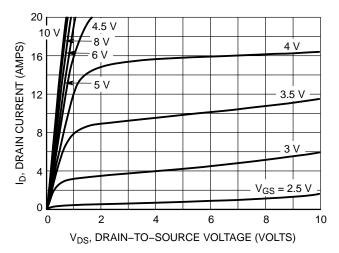
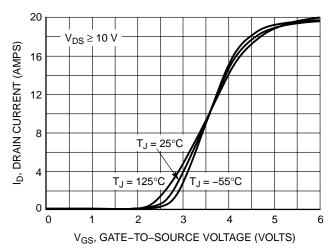



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

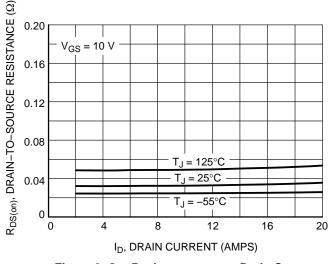


Figure 3. On–Resistance versus Drain Current and Temperature

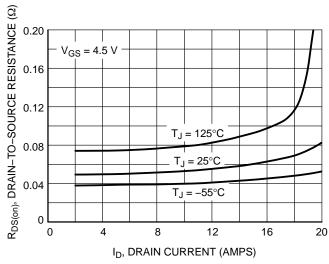


Figure 4. On-Resistance versus Drain Current and Temperature

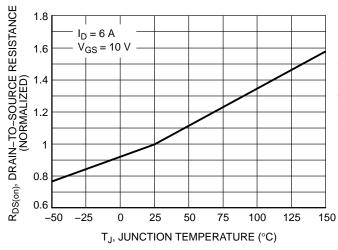


Figure 5. On–Resistance Variation with Temperature

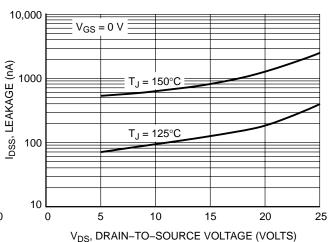


Figure 6. Drain-to-Source Leakage Current versus Voltage

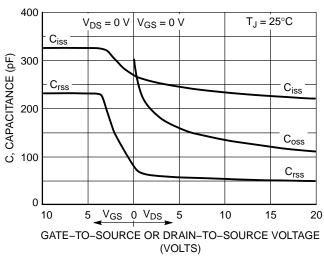


Figure 7. Capacitance Variation

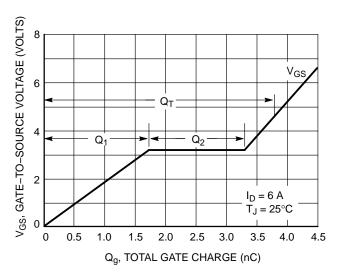


Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

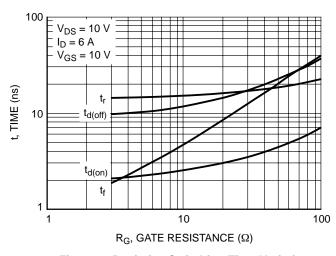


Figure 9. Resistive Switching Time Variation versus Gate Resistance

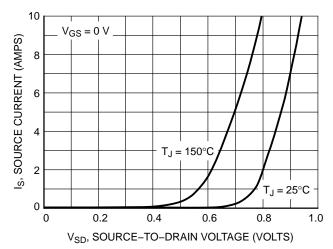
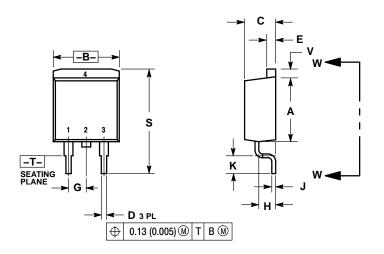
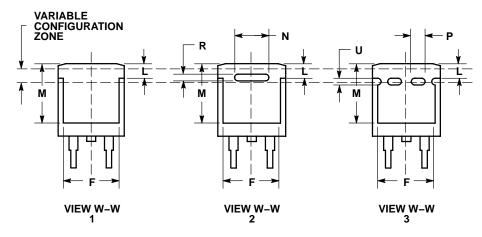
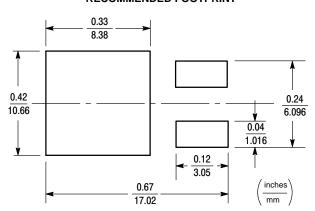




Figure 10. Diode Forward Voltage versus Current

PACKAGE DIMENSIONS

D²PAK CASE 418B-04 **ISSUE H**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
M	0.280	0.320	7.11	8.13
N	0.197 REF		5.00 REF	
Р	0.079	REF	2.00 REF	
R	0.039	REF	0.99 REF	
S	0.575	0.625	14.60	15.88
٧	0.045	0.055	1.14	1.40

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

RECOMMENDED FOOTPRINT

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.